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Optimal generalization in perceptrons 
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AbslracL A new learning algorithm for the one-layer perceptron is presented. It aims 
10 maximize the generalization gain per erample. Analytical results are obtained for the 
case of single presentation of each example. ?he weight attached to a Hebbian term is 
a function of the expected stability of the example in the teacher perceptmn. lhis leads 
to the obtention of upper bounds for the generalization ability. 

lhis r h e m e  can k iterated and the results of numerical simulations show that it 
mnverges, within errors, to the theoretical optimal generalization ability of the b y e s  
algorithm. 

Analyiical and numerical results for an algorithm with maximized generalization in 
the learning strategy with sdeclion of examples are obtained and it is proved that, as 
expeded, orthogonal selection is optimal. Ekpnential decay of the generalization e m r  
is obtained for the single presentation of selected aramples. 

In the statistical mechanics approach to learning from examples and generalization 
by neural nets [1-4], the single-layer perceptron has been the preferred laboratoly 
[5-11]. This is certainly due to its simplicity which affords relevant results from 
simple calculations and simulations. Despite its simplicity it has revealed a variety of 
interesting properties and, despite all the efforts, not all of them have been totally 
understood. 

The perceptron generalization problem most studied is that of learning a linearly 
separable Boolean function 

a( S) uB = sign ( B  . S) (1) 

where S is an input vector with N king components and B is a vector in RN.  The 
Boolean function is equivalent to the output of a ‘teacher perceptron’ with synaptic 
coupling vector equal to B, which can be taken to be normalized to one. The 
task of the ‘student perceptron’ J is to approximate this function by using only the 
information contained in a ‘learning set’ L of P (= O N )  examples. An example is 
a pair (S,,, U:) of input vector S, and correct output u:. 

’ b o  learning strategies, as defined by Valiant [12], will be studied. In the first one, 
examples are randomly drawn with a tixed probabiiity distribution, here uniform in 
RN. In the second, which has been called learning from an ‘oracle’, or with selection 
of examples 191, the teacher gives the correct answer to questions S appropriately 
chosen by the student during the learning process. We stress our use of the word 
strategy as referring to the actual probability distribution used to obtain the examples. 
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The quantity of interest is the generalization ability C ( a ) ,  defined as the 
probability that a new random input S,, statistically independent of the learning 
set, be well classified by the student perceptron. It depends only on a, in the 
thermodynamic limit N - CO [4, 7] 

(2) 
1 C ( a )  = 1 - - c o s - ' ( p ( a ) )  
7r 

where p is the average overlap of the teacher and the student, p = R/ J ,  R = B . J 
and J = m. The error of generalization is eg 7. 1 - G(a).  It is also useful 
to define the learning error e,. which is the probabihty of misclassifying a vector 
belonging to the learning set. 

The overlap p is assumed to have self-averaging properties, and thus is 
independent of the particular learning set in the thermodynamic limit. Starting from 
a fa6ula rosa J ,  = 0, learning is achieved through a generalized Hebbian prescription 
[31 

(3) 
1 

J,+, = J ,  + F W , ~ ~ S , .  

The Hebbian term is weighted by the function W,, up to now unspecified, which 
may depend on the previous states of the synaptic couplings. It may be called the 
'attention' paid to that particular example F .  It follows that 

1 
(4) Re+, = R ,  + 3 i W , ~ ; 6 ,  

where only terms up to order 1/N have been kept, and where 

J P  . s, 
Jc 

h =-, 6 P = B . S ,  and c 

In the case of single presentation of the examples, 6,' and h, are Gaussian 
correlated variables with joint probability distribution 

P ( b , , h , )  = P ( h , ) P ( b e l h e )  

and p = p,. The overlap evolution is given by 

At this point we notice that if the normalization of J ,  had been chosen to be 
spherical, equation (3) would have extra terms to account for the constraint, but 
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equation (7) would be unchanged. After averaging over the possible choices of 
S,, and taking the thermodynamic limit a differential equation is obtained for the 
evolution of p 

-=I! dP m dh,db,,P(b,,,h,) (b,-ph,)u;W,- 31 2J (8) 
da '  J _ m  

where a' = ( p / P ) a ,  refers to the fraction of examples already presented. This 
equation describes the 'rule extraction speed' of the learning algorithm, and is a 
funtional of W .  Since maximizing dp/da '  maximizes the gain in generalization 
ability per example, the problem of determining W turns into a simple variational 
problem. Its solution is 

W; = J ( K , ,  - A , , )  (9) 

where 

K ,  = u g b , / p  and A, = u i h ,  

are Gardner-like parameters and the local stability ot example ~1 respectively. The 
parameters K ,  are the desired stabilities of the examples (divided by p). They have 
a Gaussian distribution truncated at zero. It can be seen that forcing large stabilities, 
as in the random mapping case, will lead to overfitting of the examples, and it is thus 
not a good learning procedure if generalization ability is to be stressed. 

The solution W; a n  only he used by the linear perceptron or any other with an 
invertible activation function, since it requires knowledge of b,. For the perceptron 
with activation function given by (l), this is not possible and the best thing that can 
be done is to use the expected value of lbpl given the local field h ,  and the teacher 
output U;. Since W' is linear in [bl then 

We have previously studied a related algorithm [ll] where the expected value 
of b, was used. A smaller generalization is achieved since not all the available 
information was used. Using (5) the weight function 

is obtained, where 

and 
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This weight function still depends on p. By introducing it into the differential equation 
((7)) governing its evolution, it follows that 

0 Kinouchi and N Caticha 

where Dh is the Gaussian measure ( 2 ~ ) - ' / * e - ~ ~ / ~  dh. Numerical integration leads 
to the value of p ( a ' )  which is used in equation (12) to define the actual algorithm 
used to perform the simulations. Although it still depends on J this presents no 
problem, since from equation (5) a differential equation for the evolution of J(  a) 
can be obtained and it leads to J ( a )  = p ( a ) .  

In figure 1 the resulting weight function is shown, together with the corresponding 
weight functions for the pure Hebbian prescription, the perceptron, adaline and the 
relaxation algorithms. For each of these methods, the better its weight function 
approximates the weight function W the better its performance will be. It is 
reasonable to call this learning procedure the 'expected stability' algorithm. In figure 2 
the theoretical prediction for the generalization ability is compared with a numerical 
simulation. The pure Hebbian result is presented (lower curve) for comparison. Also 
the learning curves for the Hebbian (upper full) and 'expected stability' (squares) 

leads to an improvement in the rote memorization. The generalization error decays 
as 0.88/a for large a, whereas the pure Hebbian is only proportional to 

x e  shhnw!!. Eve!! th.aug!! the i?!gnrithm stresses the ge..e:a!iatia.. p:=pe:tis, it a!% 

0 4 2 3 1 1 6 7 1 9 0  
-1 5 

-2 -4 0 2 

A 01 

Figure L Examples of weight funclions of lhe Figure 2. Generalization abilily G ( n )  plotted 
'expected stability' (full NNVC). simple Hebbian against number of examples n (= PIN) .  The 
(dolled), perceplron (squares-dolled), adaline (bro- full cuwe is obtained from a numerical inlegralion 
Len curve) and the relaxation (cimles-bmken) algo- of equalion (15). ?lie Circles (generalizarion) 
rilhms for faed 01. and squares (memorization) are the resull of a 

simulation with N = 119 averaged oyer 100 NOS 

for the 'expecled slabilly' algorilhm. The lower 
cume is lhe pure Hehh 161. 

'je -&o"ghi of as &ing an q j p  bound to -I_ I. resull gefieia;hiiofi 
ability fo the 'single presentation of examples' case. The upper bound for the iterated 
presentations, where all information of each example is extracted has been calculated 
by Opper and Haussler [SI. In this case the error decays as 0.44/u, exactly (!) half 
the single presentation error. 
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Piiure 3. Comparison ai average overiap pimj of the iterated 'expected stabiiity' 
algorilhm (circles) averaged aver 20 runs, N = 149 after 50 ilerations, with the Bayes 
algorilhm p ~ (  m) (full a w e ) ,  [SI. 

It is interesting and natural to examine how this algorithm will fare under an 
iterative scheme. We are not able to say whether the generalization gain per example 

we k v e  
only proved this optimal result for the first step of this sequential dynamics. The 
generalization is not totally straightforward. Notice that the p and J dependence 
on o( and on the iteration stage niter are not known. The questions that are raised 
are what values are most appropriate for them for this problem. We have used the 
following recipe. We have set the J parameter equal to one. Its value is very near p 
and it does not affect the simulations. It is clear that during a numerical simulation 
we have access to the value of p. We have tested the numerical behaviour of the 
method in a simulation with the measured value of the overlap p ( a )  substituting the 
p parameter in the weight function. This is not very realistic and by this we are just 
judging the potential of the algorithm if p were known. After numerical convergence 
the performance was found to be very close to the value of the Bayes algorithm of 
Opper and Haussler IS], which cannot be implemented on a one-layer net, but gives 
a theoretical upper bound. Its performance 

..<I1 I.- ....,"L..:vo,l I.., ..&"" .l.- .. .̂:"I.+ C.."^*:"" 1 9 1 ,  
" l a .  "I II.YLIIY.I.,,l" "7 . o L " 6  L l l l  -.,,U "C,&.lL Iullru",, ('6, 2s befGic. 

obtained from [81 
- 

which follows from a self-consistent replica symmetric calculation. This suggests an 
approximation which actually consists in using the known Bayes value p B ( a )  for 
p(ol,ni,,,) in the weight function. The result of a numerical simulation is shown in 
figure 3. The actual performance of the perceptron is seen to converge to that of 
the Bayes algorithm. We do not claim to have other than quite strong numerical 
evidence for this algebraically fast convergence in the number of the iterations. The 
difference between pn and p is smaller than W 3 ,  with the simulated result being 
the larger due to finite-size effects. It is interesting to note that the generalization 
error eg and the learning error e ,  converge at approximately the same rate (figure 4). 
Thus the measurement of e, can be used in practice to decide when to stop the 
learning (iterative) phase. The learning error has been found to be zero up to a 
value a, 0.8, and is smaller than 2 x for any n. 
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Figure 4 Convergence of the iterated 'expected stability' algorithm: under ileration eg 
(full curves) and el (broken curves) mnverge at approximately the Same rate for fued 
CY. 

Now the second learning strategy is considered. Learning with selection of 
examples has been previously studied in [9, lo]. If the examples are chosen in any 
special way, then the distribution P ( h )  is modified. The evolution is then governed 
bY 

' I  dp 1 - p z  1 
dh P(h)exp (G) [ H ( h / X )  + H ( - h / X )  

and the gain per example can be seen to he maximized if P( h )  is chosen to be a delta 
function centred at h = 0, P ( h )  = 6(h). That means that only examples orthogonal 

justifies the heuristics of the selection criterion of Kinzel and Ruj9n 191, who studied 
the case of selections of examples with a Hehbian weight rule W = 1. The weight 
function is obtained from equation (12) 

io ;,, aaum.uiared hio.w;ecge, .will ;e .sed eGiilg ieainiiig p i ~ ~ j ,  C,& 

In our case equation (17) can be easily solved to yield 

!!E the weigh! fnncdon k W = b m e x p ( - a / r r ) .  Equation (19) shows that the 
selection of examples with weight given by equation (18) leads, somewhat suprisingly 
to expontential decrease of the generalization error, eg Y l/rr exp(-2n/a), whereas 
it is bounded by O.lW/a-'/* when W = 1, and without selection of examples the 
error only decays algebraically as eg s1 0.44/a at most. Figure 5 shows the results 
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a 

r i m  i Seieeiion oi exampies. Expected generaiizarion stabiiity ior N = i49 (circiesj. 
N = 249 (quam), both averaged over 30 IUS. me hull a w e  is the theorelical wlue 
from equation (18) and the broken N W ~  is the Hebbian ( W = 1) as in [9]. 

of a numerical simulation compared with the analytical prediction as well as the case 
where W = 1 [9]. Finite-size effects account for the differences. 

A l l =  'C'a"L"1& "y..'UL1W "L L I . W C  "6""L,,",J Ln,, LJC Y,,"C,DL""" a> rL,rr,",,rLrr,g 'all 

'energy function' E. For both strategies, with and without selection of examples, it is 
easy to see that 

. .  . .  71.. Inn-":"" ,I..".....:"" ~C.I....... -,",.-:*I.-" ~ " -  L" -.,... _I ^^ -.-.l.l. "I "- 

E = X*ln(P(a\h)) (29 

where the conditional probability P(u lh)  of U given h is 

P(olh) = H(-A/X). (2') 

We now argue that the energy function E can be thought of as a measure of 
the 'value of information' of a given example, for this particular problem. Although 
this concept has not been quantitatively defined in general, it has been discussed in 
the iiterature ii3j as related to the 'degree of non-redundancy' or 'independence' of 
each example's information content. The value of information is supposed to depend 
on the particular task to be implemented and on the state of the receptor, while 
the Shannon information content is an absolute quantity independent of task and 
receptor's previous experience. For instance, consider an example with high overlap 
h, which is well classified by the student perceptron. It will certainly be of very little 
vaiue to modify any possibie dieerznce between B and .F. On the other hand if a 
high-overlap example is misclassified, the weight will be very large and also its value 
of information. Note that a high overlap h means high a priori confidence (stability 
under addition of noise) in classifying the example and the misclassification of this 
putative easy example means that a high value of information should be attributed 
to it. The selection of examples works by choosing examples with a reasonable high 

In conclusion a new learning algorithm, has been presented which aims to 
maximize the generalization ability. The first step of the learning dynamical process 
has been studied analytically and compared to numerical results, the agreement is 
excellent (figures 2 and 5 )  for both learning strategies with and without selection of 
examples. It gives an upper bound to generalization in the single presentation case. 

....I..̂  -* :-e,.--...:-- "a,"= U, "ILUllllaUUII. 
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The expected stability algorithm can be generalized so that the result of iterated 
presentation of examples can he studied. Numerical results of the asymptotical 
behaviour have been presented. These seem to saturate the theoretical hound of 
the Bayes algorithm. Whether this is true or not remains to be seen and it certainly 
deselves further study. The dynamical properties of this iterative scheme will be the 
subject of future work 

After this work was completed, we received a preprint from Meir and Fontanari 
[14] where a relaxation algorithm with an a-dependent K parameter was studied. 
It also seems, at least numerically, to saturate the Bayes bound. Their choice 
of an optimal n ( a )  in the relaxation algorithm leads to a weight function which 
approximates w ( p , J , A )  of equation (12), at least in the region where h ,  is close 
to zero. 
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